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The fundamental equation of thermodynamics for the internal energy U may include
terms for various types of work and involves only differentials of extensive variables. The
fundamental equation for U yields intensive variables as partial derivatives of the internal
energy with respect to other extensive properties. In addition to the terms from the
combined first and second laws for a system involving PV work, the fundamental
equation for the internal energy may involve terms for chemical work, gravitational work,
work of electric transport, elongation work, surface work, work of electric and magnetic
polarization, and other kinds of work. Fundamental equations for other thermodynamic
potentials can be obtained by use of Legendre transforms that define these other
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thermodynamic potentials in terms of U minus conjugate pairs of intensive and extensive
variables involved in one or more work terms. The independent variables represented by
differentials in a fundamental equation are referred to as natural variables. The natural
variables of a thermodynamic potential are important because if a thermodynamic po-
tential can be determined as a function of its natural variables, all of the thermodynamic
properties of the system can be obtained by taking partial derivatives of the thermody-
namic potential with respect to the natural variables. The natural variables are also
important because they are held constant in the criterion for spontaneous change and
equilibrium based on that thermodynamic potential. By use of Legendre transforms any
desired set of natural variables can be obtained. The enthalpy H, Helmholtz energy A,
and Gibbs energy G are defined by Legendre transforms that introduce P, T, and P and T
together as natural variables, respectively. Further Legendre transforms can be used to
introduce the chemical potential of any species, the gravitational potential, the electric
potentials of phases, surface tension, force of elongation, electric field strength, magnetic
field strength, and other intensive variables as natural variables. The large number of
transformed thermodynamic potentials that can be defined raises serious nomenclature
problems. Some of the transforms of the internal energy can also be regarded as trans-
forms of H, A, or G. Since transforms of U, H, A, and G are useful, they can be referred
to as the transformed internal energy U0, transformed enthalpy H0, transformed Helmholtz
energy A0, and transformed Gibbs energy G0 in a context where it is clear what additional
intensive natural variables have been introduced. The chemical potential li of a species is
an especially important intensive property because its value is uniform throughout a
multi-phase system at equilibrium even though the phases may be different states of
matter or be at different pressures, gravitational potentials, or electric potentials. When
the chemical potential of a species is held constant, a Legendre transform can be used to
define a transformed Gibbs energy, which is minimized at equilibrium at a specified
chemical potential of that species. For example, transformed chemical potentials are
useful in biochemistry because it is convenient to use pH as an independent variable.
Recommendations are made to clarify the use of transformed thermodynamic potentials
of systems and transformed chemical potentials of species. � 2002 Elsevier Science Ltd. All rights

reserved.

1. Fundamental equations of thermodynamics for systems without
chemical reactions

Thermodynamic properties like the internal energy U, entropy S, temperature T, pressure
P, and volume V behave like mathematical functions, and many relations between
thermodynamic properties can be obtained by simply using the operations of calculus. As
various types of work in addition to PV work are included, the number of thermodynamic
properties is considerably expanded. Furthermore, Legendre transforms can be used to
define thermodynamic potentials in addition to U and S. This is done to make it con-
venient to use certain intensive variables. Thermodynamic potentials are extensive
properties that, like the potential energy in mechanics, give information about the most
stable state of the system. When terms for non-PV work are introduced, the number of
possible thermodynamic potentials increases exponentially, and this increases difficulties
with nomenclature and terminology. This Technical Report has been written to promote
discussion of these problems and agreements on their solution.
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It is highly desirable that there be the widest possible general agreement about these
basic matters because they affect nomenclature and terminology in various subfields of
chemical thermodynamics. If these subfields were sufficiently isolated, they could de-
velop independent nomenclature and terminology, but the subfields of thermodynamics
are not isolated. Experiments often involve more than one type of work other than PV
work. Research on chemical equilibria may involve surfaces or phases at different electric
potentials. Electrochemistry may involve surfaces and chemical equilibria. Biochemical
applications may involve the coupling of reactions and mechanical work or the coupling of
reactions with the transport of ions between phases at different electric potentials.

From a mathematical point of view, there is a great deal in common between the
thermodynamic treatments of various types of work starting with the fundamental
equations of thermodynamics. Thermodynamics involves a network of inter-related
equations, and so the nomenclature in any one equation affects the nomenclature in many
other equations. Different subfields of thermodynamics have different needs and different
traditions, but this report deals with the basic nomenclature and terminology that un-
derlies the treatment of all types of work in chemical thermodynamics.

Thermodynamics is such a large field that it is not possible to cover everything here.
The interesting phenomena of critical regions are not discussed. Many future develop-
ments in nomenclature are to be expected. The emphasis of these recommendations is on
the fundamental equations of thermodynamics and the introduction of intensive variables
with Legendre transforms.

1.1. ONE-PHASE SYSTEMS WITH N SPECIES

The differential of the internal energy U of an open one-phase system involving only PV
work and changes in amounts of species is given by the fundamental equationð1Þ

dU ¼ T dS � P dV þ
XN
i¼1

li dni; ð1:1:1Þ

where N is the number of species, li is the chemical potential of species i, and ni is the
amount of species i. This equation shows that the thermodynamic properties of the system
behave like mathematical functions and can be differentiated and integrated. The vari-
ables on the right-hand side of a fundamental equation occur as conjugate pairs. The
internal energy can be considered to be a function of S, V, and fnig, where fnig is the set
of amounts of species, and calculus yields the following relation:

dU ¼ oU
oS

� �
V ;fnig

dS þ oU
oV

� �
S;fnig

dV þ
XN
i¼1

oU
oni

� �
S;V ;ni

dni; ð1:1:2Þ

where j 6¼ i. (Note that this convention is used throughout this report.) Comparison of
equations (1.1.1) and (1.1.2) shows that

T ¼ oU
oS

� �
V ;fnig

; ð1:1:3Þ
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P ¼ � oU
oV

� �
S;fnig

; ð1:1:4Þ

li ¼
oU
oni

� �
S;V ;nj

: ð1:1:5Þ

The variables in the differentials on the right-hand side of the fundamental equation have
a special significance and are referred to as natural variables.ð2–12Þ For the system under
consideration, the natural variables of U are S, V, and fnig. The natural variables of a
thermodynamic potential are important because when a thermodynamic potential can be
determined as a function of its natural variables, all of the thermodynamic properties of
the system can be calculated, as illustrated by equations 1.1.3,1.1.4,1.1.5. All of the
thermodynamic properties can be calculated if U is determined as a function of S, V, and
fnig, but not if U is determined as a function of T, P, and fnig, or other set of N þ 2
independent variables. The natural variables are also important because they are used in
the criterion for spontaneous change and equilibrium based on a particular thermody-
namic potential. The criterion for equilibrium for a one-phase system without chemical
reactions is ðdUÞS;V;fnig 6 0, which means that at constant S, V, and fnig, U can only
decrease and is at a minimum at equilibrium. The natural variables of U are all extensive.
As terms for additional types of work are added to equation (1.1.1), they should each
involve the differential of an extensive property (see section 1.3).

Equation (1.1.1) can be integrated at constant values of the intensive properties to obtain

U ¼ TS � PV þ
XN
i¼1

lini: ð1:1:6Þ

Alternatively, this equation can be viewed as a consequence of Euler�s theorem. A
function fðx1; x2; . . . ; xNÞ is said to be homogeneous of degree n if

f ðkx1; kx2; . . . ; kxN Þ ¼ knf ðx1; x2; . . . ; xN Þ; ð1:1:7Þ

where k is a constant. For such a function, Euler�s theorem states that

nf ðx1; x2; . . . ; xN Þ ¼
XN
i¼1

xi
of
oxi

: ð1:1:8Þ

The internal energy of an open system is homogeneous of degree one in terms of the
extensive properties S, V, and fnig, and so equation (1.1.6) follows from Euler�s theorem.
The integrated forms of fundamental equations are sometimes referred to as Euler
equations, but it is better to call them integrated equations to avoid confusion with Euler�s
theorem. It is important to remember that the intensive variables for a system are not all
independent, as discussed later in connection with the Gibbs–Duhem equation.

Equation (1.1.1) has the following mixed cross derivatives (Maxwell equations),
which indicate some of the relationships between the thermodynamic properties for this
system:
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oT
oV

� �
S;fnig

¼ � oP
oS

� �
V ;ðniÞ

; ð1:1:9Þ

oT
oni

� �
S;V ;nj

¼ oli

oS

� �
V ;ðniÞ

; ð1:1:10Þ

� oP
oni

� �
S;V ;nj

¼ oli

oV

� �
S;ðniÞ

; ð1:1:11Þ

olj

oni

� �
S;V ;nj

¼ oli

onj

� �
S;V ;ni

: ð1:1:12Þ

Since S and V are often inconvenient natural variables from an experimental point of
view, Legendre transforms are used to define further thermodynamic potentials that have
P as a natural variable rather than V. T as a natural variable rather than S and both T and
P as natural variables. A Legendre transform is a linear change in variables in which one
or more products of conjugate variables are subtracted from the internal energy to define
a new thermodynamic potential.ð2–16Þ The Legendre transforms that introduce P, T, and T
and P together as natural variables are

H ¼ U þ PV ; ð1:1:13Þ

A ¼ U � TS; ð1:1:14Þ

G ¼ U þ PV � TS: ð1:1:15Þ

They define the enthalpy H, the Helmholtz energy A, and the Gibbs energy G. Legendre
transforms are also used in mechanics to obtain more convenient independent variables.
The Lagrangian L is a function of coordinates and velocities, but it is often more con-
venient to define the Hamiltonian function H with a Legendre transform because the
Hamiltonian is a function of coordinates and momenta. Quantum mechanics is based on
the Hamiltonian rather than the Lagrangian function. The important thing about Legendre
transforms is that the new thermodynamic potentials defined in this way all contain
exactly the same information as U.

The fundamental equations for H, A, and G are obtained by taking the differentials of
equations (1.1.13)–(1.1.15), and substituting equation (1.1.1). For example, the funda-
mental equation for G is

dG ¼ �S dT þ V dP þ
XN
i¼1

li dni: ð1:1:16Þ

Each of the fundamental equations for the thermodynamic properties defined by
Legendre transforms provides more partial derivatives and more Maxwell equations.
Some of the thermodynamic potentials are also linked by Gibbs–Helmholtz equations
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H ¼ �T 2 oðG=T Þ
oT

� �
P ;ðniÞ

; ð1:1:17Þ

U ¼ �T 2 oðA=T Þ
oT

� �
V ;ðniÞ

: ð1:1:18Þ

The integrated forms of the fundamental equations for H, A, and G are

HfS; P ; ðniÞg ¼ TS þ
XN
i¼1

nili; ð1:1:19Þ

AfT ; V ; ðniÞg ¼ �PV þ
XN
i¼1

nili; ð1:1:20Þ

GfT ; P ; ðniÞg ¼
XN
i¼1

nili: ð1:1:21Þ

Thus, only the Gibbs energy of this system is made up of additive contributions from
species. The natural variables of H, A, and G are indicated by the variables in paren-
theses. The corresponding criteria of spontaneous change and equilibrium involve these
natural variables; namely ðdHÞS;P;fnig 6 0, ðdAÞT;V;fnig 6 0, and ðdGÞT;P;fnig 6 0.

More Legendre transforms are possible for the system described by equation (1.1.1)
because chemical potentials can be introduced as natural variables by use of Legendre
transforms; that is described in sections 2.2 and 2.3.

Equations (1.1.13)–(1.1.15) define partial Legendre transforms. The complete trans-
form is obtained by subtracting all of the conjugate pairs for a system from U. For the
system under discussion, the complete Legendre transformð7;14Þ is

U 0 ¼ U þ PV � TS �
XN
i¼1

lini: ð1:1:22Þ

Taking the differential of the transformed internal energy U0 and substituting equation
(1.1.1) yields

0 ¼ �S dT þ V dP þ
XN
i¼1

ni dli; ð1:1:23Þ

the differential of U0 is zero because U0 is equal to zero, as is evident from equations
(1.1.6) and (1.1.22). Equation (1.1.23) is referred to as the Gibbs–Duhem equation for the
system. Since it gives a relation between the intensive properties for the system, these
properties are not independent for the system at equilibrium. For the one-phase system, the
number of independent intensive properties is N þ 1. The Gibbs–Duhem equation can be
regarded as the source of the phase rule, according to which the number f of independent
intensive variables is given by f ¼ N � p þ 2, where p is the number of phases, for a
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system involving only PV work and chemical work but no chemical reactions. If chemical
reactions are involved, the phase rule is f ¼ N � R � p þ 2 ¼ C � p þ 2, where R is the
number of independent reactions and C ¼ N � R is the number of components. Com-
ponents are discussed later in connection with phase equilibria and chemical equilibria.

In view of the importance of natural variables, it is convenient to have a symbol for the
number of natural variables, just as it is convenient to have a symbol f for the number of
independent intensive variables (degrees of freedom), as given by the phase rule. It can
be shown that the number D of natural variables (independent variables to describe the
extensive state) for a system without chemical reactions is given by

D ¼ f þ p ¼ N þ 2: ð1:1:24Þ

For a system with chemical reactions,

D ¼ f þ p ¼ N � Rþ 2 ¼ C þ 2: ð1:1:25Þ

The number of thermodynamic potentials for a system is given by 2D, and the number of
Legendre transforms is 2D � 1. The number of thermodynamic potentials includes the
potential that is equal to zero and yields the Gibbs–Duhem equation. The number of
Maxwell equations for each of the thermodynamic potentials is DðD � 1Þ=2, and the
number of Maxwell equations for all of the thermodynamic potentials for a system is
½DðD � 1Þ=2�2D.ð13Þ When Legendre transforms are used to introduce two new natural
variables ðT;PÞ, then 2D ¼ 22 ¼ 4 thermodynamic potentials are related by Legendre
transforms, as we have seen with U, H, A, and G. There are four Maxwell equations.

This section has shown that intensive variables are introduced as natural variables only
by use of Legendre transforms. Since a Legendre transform defines a new thermody-
namic potential, it is important that the new thermodynamic property have its own
symbol and name. The new thermodynamic potentials contain all the information in
UðS;VfnigÞ, and so the use of U, H, A, G, or other thermodynamic potential in place of
U is simply a matter of convenience.

1.2. ONE-PHASE SYSTEMS WITH ONE SPECIES

In order to discuss the complete set of Legendre transforms for a system, we consider a
one-phase system with one species. The fundamental equation for U is

dU ¼ T dS � P dV þ ldn: ð1:2:1Þ

The integration of this fundamental equation at constant values of the intensive variables
yields

U ¼ TS � PV þ ln: ð1:2:2Þ

Since D ¼ 3, there are 23 � 1 ¼ 7 thermodynamic potentials defined by Legendre
transforms and 24 Maxwell equations. There are not generally accepted symbols for all of
these thermodynamic potentials, and so a suggestion made by Callenð3Þ is utilized here.
Callen pointed out that all conceivable thermodynamic potentials can be represented by
U followed by square brackets around a list of the intensive variables introduced as
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natural variables by the Legendre transform defining the new thermodynamic potential.
For example, the thermodynamic potentials defined by Legendre transforms (1.1.13)–
(1.1.15) can be represented by U½P� ¼ H, U½T� ¼ A, and U½T;P� ¼ G. The seven
Legendre transforms for a one-phase system with one species are

H ¼ U þ PV ; ð1:2:3Þ

A ¼ U � TS; ð1:2:4Þ

G ¼ U þ PV � TS; ð1:2:5Þ

U ½l� ¼ U � ln; ð1:2:6Þ

U ½P ; l� ¼ U þ PV � ln; ð1:2:7Þ

U ½T ; l� ¼ U � TS � ln; ð1:2:8Þ

U ½T ; P ; l� ¼ U þ PV � TS � ln ¼ 0: ð1:2:9Þ

The first three Legendre transforms introduce P, T, and T and P together as natural
variables. The last four Legendre transforms introduce the chemical potential as a natural
variable. Three of these thermodynamic potentials are frequently used in statistical me-
chanics, and there are generally accepted symbols for the corresponding partition func-
tions:ð12Þ U½T� ¼ A ¼ �RT lnQ, where Q is the canonical ensemble partition function;
U½T;P� ¼ G ¼ �RT lnD, where D is the isothermal–isobaric partition function; and
U½T;l� ¼ �RT lnN, where N is the grand canonical ensemble partition function. The last
thermodynamic potential U½T;P; l� is equal to zero because it is the complete Legendre
transform for the system, and this Legendre transform leads to the Gibbs–Duhem equation.

Taking the differentials of the seven thermodynamic potentials defined in equations
(1.2.3)–(1.2.9) and substituting equation (1.2.1) yields the fundamental equations for
these seven thermodynamic potentials:

dH ¼ T dS þ V dP þ ldn; ð1:2:10Þ

dA ¼ �S dT � P dV þ ldn; ð1:2:11Þ

dG ¼ �S dT þ V dP þ ldn; ð1:2:12Þ

dU ½l� ¼ T dS � P dV � ndl; ð1:2:13Þ

dU ½P ; l� ¼ T dS þ V dP � ndl; ð1:2:14Þ

dU ½T ; l� ¼ �S dT � P dV � ndl; ð1:2:15Þ

dU ½T ; P ; l� ¼ �SdT þ V dP � ndl ¼ 0: ð1:2:16Þ
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The last fundamental equation is the Gibbs–Duhem equation for the system, which shows
that only two of the three intensive properties are independent. Because of the Gibbs–
Duhem equation, we can say that the chemical potential of a pure substance is a function
of temperature and pressure. The number f of independent intensive variables is 2, and so
D ¼ f þ p ¼ 2þ 1 ¼ 3. Each of these fundamental equations yields DðD � 1Þ=2 ¼ 3
Maxwell equations. The criteria of equilibrium provided by these thermodynamic po-
tentials are ðdUÞS;V;n 6 0, ðdHÞS;P;n 6 0, ðdAÞT;V;n 6 0, ðdGÞT;P;n 6 0, fdUðlÞgS;V;l 6 0,
fdUðP; lÞgS;P;l 6 0, and fdUðT; lÞgT;V;l 6 0.

The integrated forms of the eight fundamental equations for this system are

UðS; V ; nÞ ¼ TS � PV þ ln; ð1:2:17Þ

HðS; P ; nÞ ¼ TS þ ln; ð1:2:18Þ

AðT ; V ; nÞ ¼ �PV þ ln; ð1:2:19Þ

GðT ; P ; nÞ ¼ ln; ð1:2:20Þ

U ½l�ðS; V ; lÞ ¼ TS � PV ; ð1:2:21Þ

U ½P ; l�ðS; P ; lÞ ¼ TS; ð1:2:22Þ

U ½T ; l�ðT ; V ; lÞ ¼ �PV ; ð1:2:23Þ

U ½T ; P ; l�ðT ; P ; lÞ ¼ 0: ð1:2:24Þ

The natural variables are shown in parentheses.

1.3. OTHER TYPES OF WORK

Table 1 shows a number of types of work terms that may be involved in a thermodynamic
system.ð16Þ The last column shows the form of work terms in the fundamental equation for
the internal energy. When there are no chemical reactions, the amounts of species are
independent variables, but when there are chemical reactions, the amounts of components
are independent variables, as discussed in section 2.1. In some cases the extensive
variables for other kinds of work are proportional to the amounts of species so that these
work terms are not independent of the chemical work terms. In these cases the other types
of work do not introduce new natural variables for U.

Note that each type of work term in the fundamental equation for U is written in the
form (intensive variable)d(extensive variable). The intensive variables in the various
work terms may be referred to as generalized forces, and the extensive variables may be
referred to as generalized displacements. Several types of work terms may be involved in
a single thermodynamic system. The first question that must be considered before writing
the fundamental equation for an actual system is the possible dependence of the extensive
variables m;Qi;L;As; p;m on fnig. It is not possible to give a general answer to the
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question as to which extensive variables are independent because that depends on the
system.

1.4. ONE-PHASE SYSTEMS WITH N SPECIES AND NON-PV WORK

Here we consider an unspecified type of work XdY in which the extensive property Y is
independent of fnig. Phase equilibrium and chemical equilibrium are discussed in sec-
tions 1.5 and 2.1. The fundamental equation for U for the system considered is

dU ¼ T dS � P dV þ
X

li dni þ X dY : ð1:4:1Þ

If we are only interested in specifying the chemical potential of one species (the sth
species), there are D ¼ 24 ¼ 16 possible thermodynamic potentials. The following
equations give the integrated equation for U and the 15 Legendre transforms defining
new thermodynamic potentials. In representing thermodynamic potentials, Callen�s no-
menclatureð2;3Þ is extended by using H, A, and G with square brackets, as well as U. The
use of H[ ] indicates that P is introduced by the Legendre transform as well as the

TABLE 1. Conjugate pairs of variables in work terms for the fundamental equation for Ua

Type of work Intensive variable Extensive variable Differential work in dU

Mechanical

Pressure–volume �P V �P dV

Elastic f L f dL

Gravitational w ¼ gh m ¼
P

Mini wdm ¼
P

ghMi dni

Surface c As cdAs

Electromagnetic

Charge transfer /i Qi /i dQi

Electric polarization E p E � dp
Magnetic polarization B m B � dm

Chemical

Chemical: no reactions li ni (species) li dni

Chemical: reactions li nci (components) li dnci
aHere w ¼ gh is the gravitational potential, g is the gravitational acceleration, h is height above the surface of

the earth, m is mass, Mi is moar mass, /i is the electric potential of the phase containing species i;Qi is the
contribution of species i to the electric charge of a phase, zi is the charge number, F is the Faraday constant, f is
force of elongation, L is length in the direction of the force, c is surface tension, As is surface area, E is electric
field strength, p is the electric dipole moment of the system, B is magnetic field strength (magnetic flux density),
and m is the magnetic moment of the system. In some electrochemical systems, Qi ¼ Fzini so that
dQi ¼ Fzi dni. The dots indicate scalar products of vectors. Some of the other work terms can be written in
vector notation. Other types of work terms are possible, and some of the expressions for differential work are
more complicated; for example, the force on a solid may be represented by a tensor and w may be a centrifugal
potential. The term cdAs applied to flat surfaces.
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indicated variables, the use of A[ ] indicates that T is introduced by the Legendre
transform as well as the indicated variables, and the use of G[ ] indicates that T and P are
introduced as well as the indicated variables.

U ¼ TS � PV þ
X

lini þ XY ¼ f fS; V ; ðniÞ; Y g; ð1:4:2Þ

H ¼ U þ PV ¼ TS þ
X

lini þ XY ¼ f fS; P ; ðniÞ; Y g; ð1:4:3Þ

A ¼ U � TS ¼ �PV þ
X

lini þ XY ¼ f fT ; V ; ðniÞ; Y g; ð1:4:4Þ

G ¼ U þ PV � TS ¼
X

lini þ XY ¼ f fT ; P ; ðniÞ; Y g; ð1:4:5Þ

U ½X � ¼ U � XY ¼ TS � PV þ
X

lini ¼ f fS; V ; ðniÞ;Xg; ð1:4:6Þ

H ½X � ¼ H � XY ¼ TS þ
X

lini ¼ f fS; P ; ðniÞ;Xg; ð1:4:7Þ

A½X � ¼ A� XY ¼ �PV þ
X

lini ¼ f fT ; V ; ðniÞ;Xg; ð1:4:8Þ

G½X � ¼ G� XY ¼
X

lini ¼ f fT ; P ; ðniÞ;Xg; ð1:4:9Þ

U ½ls� ¼ U � nsls ¼ TS � PV þ
X

lini þ XY ¼ f fS; V ; ðniÞ; ls; Y g; ð1:4:10Þ

H ½ls� ¼ H � nsls ¼ TS þ
X

lini þ XY ¼ f fS; P ; ðniÞ; ls; Y g; ð1:4:11Þ

A½ls� ¼ A� nsls ¼ �PV þ
X

lini þ XY ¼ f fT ; V ; ðniÞ; ls; Y g; ð1:4:12Þ

G½ls� ¼ G� nsls ¼
X

lini þ XY ¼ f fT ; P ; ðniÞ; ls; Y g; ð1:4:13Þ

U ½ls;X � ¼ U � nsls � XY ¼ TS � PV þ
X

lini ¼ f fS; V ; ðniÞ; ls;Xg; ð1:4:14Þ

H ½ls;X � ¼ H � nsls � XY ¼ TS þ
X

lini ¼ f fS; P ; ðniÞ; ls;Xg; ð1:4:15Þ

A½ls;X � ¼ A� nsls � XY ¼ �PV þ
X

lini ¼ f fT ; V ; ðniÞ; ls;Xg; ð1:4:16Þ

G½ls;X � ¼ G� nsls � XY ¼
X

lini ¼ f fT ; P ; ðniÞ; ls;Xg; ð1:4:17Þ

where i 6¼ s in equations (1.4.1)–(1.4.17). Note that this last thermodynamic potential
would be a complete Legendre transform if there was only one species present, and so
it would lead to a Gibbs–Duhem equation in that case. When there are chemical re-
actions at equilibrium, we have to deal with components and this requires further in-
terpretation of ni and li in equations (1.4.10)–(1.4.17), which is discussed in sections
2.2 and 2.3.

1.5. PHASE EQUILIBRIUM

Fundamental equation (1.1.16) for G for an open system can be used for a system with
multiple phases by counting each species in a different phase as a different species. This
indicates that the system has ðN þ 2Þ natural variables, but in order to identify the natural
variables for the system at equilibrium and to write the criterion for equilibrium it is
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necessary to introduce the constraints, which are lia ¼ lib for each species in a two-phase
system. The fundamental equation for a thermodynamic potential like G can be written in
terms of natural variables for the system at equilibrium by using the equilibrium con-
straints to reduce the number of terms. For example, consider a system with two species
and two phases. Substituting l1a ¼ l1 and l2a ¼ l2b ¼ l2 yields

dG ¼ �S dT þ V dP þ l1 dnc1 þ l2 dnc2; ð1:5:1Þ

where nc1 ¼ n1a þ n1b and nc2 ¼ n2a þ n2b are the amounts of two components. Note that
components are conserved. This form of the fundamental equation indicates that there are
four natural variables for this system at equilibrium, which can be taken as T, P, nc1, and
nc2. This is in agreement with D ¼ ðf þ p ¼ 2þ 2Þ ¼ 4, where f ¼ ðN � pþ
2 ¼ 2� 2þ 2Þ ¼ 2. However, there is a choice of natural variables, and it may be more
useful to write the fundamental equation for G as

dG ¼ �S dT þ V dP þ hlaidna þ hlbidnb; ð1:5:2Þ

where na ¼ n1a þ n2a, nb ¼ n1b þ n2b are amounts of the two phases. The average
chemical potentials in the a and b phases are given by

hlia ¼
l1n1a þ l2n2a
n1a þ n2a

; ð1:5:3Þ

hlib ¼ l1n1b þ l2n2b
n1b þ n2b

: ð1:5:4Þ

Equation (1.5.1) indicates that the criterion for spontaneous change and equilibrium can
be written ðdGÞT;P;nc1;nc2

6 0, and equation (1.5.2) indicates that the criterion can alter-
natively be written ðdGÞT;P;na;nb 6 0. The fact that there are only two intensive properties
for this system can also be understood by considering the two Gibbs–Duhem equations
for the system. These equations for the separate phases both involve dT, dP, dl1, and
dl2. The quantity dl2 can be eliminated between these two equations, and the resulting
equation can be solved for dl1 as a function of T and P. Thus, l1 and l2 are both
functions of T and P.

The integrated forms of fundamental equations (1.5.1) and (1.5.2) are

G ¼ l1nc1 þ l2nc2; ð1:5:5Þ

G ¼ hlaina þ hlbinb: ð1:5:6Þ

In concluding Section 1, the following points are emphasized. Legendre transforms
provide the only means for introducing intensive variables into criteria for spontaneous
change and equilibrium. Intensive variables are introduced because they are often easier
to control than extensive variables. When various types of work terms are involved, the
number of possible Legendre transforms is 2D � 1, and the number of thermodynamic
potentials that can be used in criteria of spontaneous change and equilibrium is 2D, where
D ¼ ðf þ pÞ is the number of natural variables. Since each thermodynamic potential
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requires a symbol and name, there is a serious nomenclature problem. It is important to
be aware of all the Legendre transforms that can be applied to a given system. The
problem of the dependence of extensive variables in other types of work on ðniÞ has been
pointed out.

2. Fundamental equations of thermodynamics for systems with
chemical reactions

2.1. COMPONENTS IN CHEMICAL REACTION SYSTEMS

In a one-phase reaction system, the natural variables appear to be T, P, and fnig, but
because of the constraints of the chemical reactions, the fnig are not independent vari-
ables for a closed reaction system. The amounts of components are independent vari-
ables.ð13;17–19Þ The conversion from amounts of species to amounts of components in a
chemical reaction system is illustrated by consideration of a closed system in which the
reaction

Aþ B ¼ C ð2:1:1Þ

occurs. The fundamental equation for G is

dG ¼ �S dT þ V dP þ lA dnA þ lB dnB þ lC dnC: ð2:1:2Þ

The equilibrium condition derived from this equation is

lA þ lB ¼ lC: ð2:1:3Þ

Using this constraint to eliminate lC from the fundamental equation for G yields

dG ¼ �S dT þ V dP þ lAðdnA þ dnCÞ þ lBðdnB þ dnCÞ
¼ �SdT þ V dP þ lAdncA þ lBdncB; ð2:1:4Þ

where ncA ¼ nA þ nC and ncB ¼ nB þ nC are the amounts of components A and B. For this
system, f ¼ ðN � R � p þ 2Þ ¼ ð3� 1� 1þ 2Þ ¼ 3, and D ¼ ðf þ pÞ ¼ ð3þ 1Þ ¼ 4.
The natural variables can be chosen to be T, P, ncA, and ncB, but this choice is not unique
because lA or lB could have been eliminated using equation (2.1.3). The amounts of
components are constants for the system, and they need to be known in order to calculate
the equilibrium composition.ð20Þ The criterion for spontaneous change and equilibrium
can be written ðdGÞT;P;ncA;ncB

6 0. When a system involves chemical reactions, the
amounts of species at any given time are given by

ni ¼ ni0 þ
XR
j¼1

mijnj; ð2:1:5Þ

where ni0 is the initial amount of species i, mij is the stoichiometric number of species i in
reaction j, nj is the extent of reaction j, and R is the number of independent reactions.
Since there are N species and R reactions, the number of components C is given by
C ¼ N � R.
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In dealing with multi-reaction systems, it is useful to express equation (2.1.5) in
matrix form

n ¼ n0 þ mn; ð2:1:6Þ
where n is the N � 1 matrix of amounts of species, n0 is the N � 1 matrix of initial
amounts of species, m is the N � R matrix of stoichiometric numbers, and n is the R � 1
matrix of extents of reactions. The fundamental equation for G for a multi-reaction
system can be written

dG ¼ �S dT þ V dP þ ldn ¼ �S dT þ V dP þ lm dn; ð2:1:7Þ

where l is the 1� N matrix of chemical potentials of species. This equation can be used
to derive the equilibrium conditionð17Þ

lm ¼ 0; ð2:1:8Þ
where the zero matrix 0 is 1� R. Equation (2.1.7) is useful for thinking about the
equilibrium conditions, but to identify the natural variables and state the criterion of
spontaneous change and equilibrium, it is necessary to use components.

At equilibrium, there are R known equations of the type

XN
i¼1

mijli ¼ 0: ð2:1:9Þ

Each equilibrium condition can be used to eliminate one chemical potential from
equation (1.1.1) so that the fundamental equation for G stated in terms of natural vari-
ables for a chemical reaction system is

dG ¼ �S dT þ V dP þ
XC
i¼1

li dnci; ð2:1:10Þ

where li is the chemical potential of a species and nci is the amount of the component
with that chemical potential. The number of components in a system is unique, but
different sets of components can be chosen.ð19Þ When a system is at chemical equilibrium,
the chemical potential of a component is given by

li ¼
oG
onci

� �
T ;P ;ncj

; ð2:1:11Þ

where j 6¼ i. Beattie and Oppenheimð13Þ discuss their two theorems on chemical poten-
tials: (1) ‘‘The chemical potential of a component of a phase is independent of the choice
of components.’’ (2) ‘‘The chemical potential of a constituent of a phase when considered
to be a species is equal to its chemical potential when considered to be a component.’’
Thus, for a chemical reaction system, the criterion for equilibrium is ðdGÞT;P;fncig 6 0.

The number of components is equal to the rank of the conservation matrix A, which
has a column for each species and a row for each independent conservation equation.ð17Þ

The conservation matrix is made up of the coefficients of the conservation equations for
the system. In chemical reactions, atoms of elements and electric charge are conserved,

1800 R. A. Alberty



and sometimes groups of atoms are conserved as well, so that conservation equations may
not all be independent. If two elements always appear in the same ratio, they can be
considered to be a pseudoelement. There may be additional conservation equations that
arise from the mechanism of reaction. The independent conservation equations for a
system are represented by

An ¼ nc; ð2:1:12Þ
where A is the C � N conservation matrix, n is the N � 1 matrix of amounts of species,
and nc is the C � 1 matrix of amounts of components. The conservation matrix for a
system is related to the stoichiometric number matrix m by

Am ¼ 0; ð2:1:13Þ
where m is the N � R stoichiometric number matrix and the zero matrix is C � R. The
stoichiometric number matrix m is in the null space of A and can be calculated by hand for
small matrices or by computer for large matrices. Alternatively, AT is the null space of
mT, where T indicates the transpose. Neither A nor m for a system are unique, but their
row-reduced forms are unique for a given order of species.

The fundamental equation for G in terms of components (equation (2.1.10)) can be
written in matrix notation:

dG ¼ �S dT þ V dP þ lc dnc ¼ lcAdn; ð2:1:14Þ
where lc is the 1� C chemical potential matrix for the components and nc is the C � 1
amount matrix for components. The second form is obtained by use of equation (2.1.12).
Note that A is a transformation matrix for the transformation from a set of N species to a
set of C components. For a reaction system, the number of degrees of freedom is given by
f ¼ ðN � R � p þ 2Þ ¼ ðC � p þ 2Þ, so that the intensive state for a one-phase system is
specified by f ¼ C þ 1 intensive variables. Since D ¼ ðf þ pÞ ¼ ðC þ 2Þ, natural vari-
ables for a one-phase reaction system can be chosen to be T, P, and fncig.

For a reaction system, it may be useful to choose the chemical potential of a species to
be an independent variable. Some of the amounts of components can be replaced as
natural variables by the chemical potentials of the corresponding series by use of
Legendre transform to define a transformed Gibbs energy, as explained in sections 2.2
and 2.3. It is evident from ðdGÞT;P;fncig 6 0 that only C � 1 amounts of components can be
replaced by specified chemical potentials because the description of the state of the
system must include at least one extensive variable.

2.2. GAS REACTIONS

Under certain circumstances it is of interest to consider chemical equilibrium in a gaseous
reaction system when the chemical potential of a reacting species, represented here as B,
is held constant. The criterion for spontaneous change and equilibrium at specified T, P
and chemical potential of a species can be derived by defining a new thermodynamic
potential by using a Legendre transform in which a product of conjugate variables is
subtracted from the Gibbs energy. The conjugate variable to the chemical potential of a
species is the amount of the component corresponding with that species. The chemical
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potential of species B can be introduced as a natural variable by making a Legendre
transform of the Gibbs energy of the formð21–23Þ

G0 ¼ G� ncBlB; ð2:2:1Þ

where ncB is the amount of component B in the system. The amount of component B in
the system can be expressed in terms of the amounts of B in the various species by

ncB ¼
XN
i¼1

NBini; ð2:2:2Þ

where N is the number of species in the system and NBi is the number of component
molecules of B in a species molecule of i. Equation (2.2.2) gives the amount of the B
component, and it is this amount that has to be used in the Legendre transform because at
chemical equilibrium, it is only the amounts of components that are independent variables
(see equation (1.5.1)). Substituting G ¼

P
lini and (2.2.2) in equation (2.2.1) yields

G0 ¼
XN
i¼1

ðli � NBilBÞni ¼
XN
i¼1

l0
ini; ð2:2:3Þ

where the transformed chemical potential l0
i of species i is defined by

l0
i ¼ li � NBilB: ð2:2:4Þ

When the chemical potential of B is specified, the contributions of other species to the
transformed Gibbs energy of the system are additive in their transformed chemical po-
tentials l0

i, as shown by equation (2.2.3).
Eliminating li between equation (2.2.4) and equation (2.1.2) yields

dG ¼ �S dT þ V dP þ lB dncB þ
XN�1

i¼1

l0
i dni: ð2:2:5Þ

Note that there is no longer a separate term for species B in the summation. Since the B
component is in a separate term, we can use the Legendre transform (2.2.1) to make lB a
natural variable. The differential of G0 in equation (2.2.1) is taken and equation (2.2.5) is
substituted to obtain

dG0 ¼ �S dT þ V dP � ncB dlB þ
XN�1

i¼1

l0
i dni: ð2:2:6Þ

When the chemical potential of B is specified, species that differ only in the number of
B molecules that they contain become pseudoisomers, and they have the same trans-
formed chemical potential at equilibrium, just like isomers have the same chemical
potential at equilibrium. The amounts of pseudoisomers can be summed to yield n0

i, the
amount of species in the pseudoisomer group; n0

i ¼
P

ni. Thus, the specification of the
chemical potential of a species leads to a reconceptualization of the equilibrium calcu-
lation in terms of amounts n0

i of pseudoisomer groups, rather than amounts ni species.
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This may lead to a considerable simplification of the fundamental equation because the
number N0 of pseudoisomer groups may be considerably less than the number N of
species. Thus, equation (2.2.6) can be written

dG0 ¼ �S dT þ V dP � ncB dlB þ
XN 0

i¼1

l0
i dn

0
i: ð2:2:7Þ

For example, when the partial pressure of ethylene is specified, the successive isomer
groups in an entire homologous series become pseudoisomers and are represented by one
term in the summation in equation (2.2.7).

Up to this point the treatment has been completely general, but now we assume that
the gases are ideal so that

li ¼ lo
i þ RT lnðPi=P oÞ; ð2:2:8Þ

where Po is the standard state pressure (1 bar¼ 0.1MPa). In order to use PB as an in-
dependent variable in the fundamental equation rather than lB, dlB in equation (2.2.7) is
replaced with the expression for the total differential

dlB ¼ olB

oT

� �
PB

dT þ olB

oPB

� �
T
dPB: ð2:2:9Þ

When the derivatives of lB are taken and equation (2.2.9) is substituted in equation
(2.2.7), we obtain

dG0 ¼ �S0 dT þ V dP 0 � ðncBRT =PBÞdPB þ
XN 0

i¼1

l0
i dn

0
i; ð2:2:10Þ

where N0 is the number of pseudoisomer groups.
The transformed entropy of the system is given by

S0 ¼ S � ncBSB; ð2:2:11Þ

where SB is the molar entropy of B and ncB is the total amount of B bound in the system.
In equation (2.2.10), P0 is the sum of the partial pressures of species other than B,

ncB ¼
XN 0

i¼1

NBðiÞn0i: ð2:2:12Þ

Here NBðiÞ is the average number of B molecules in i and n0
i is the sum of the amounts of

species that differ only with respect to the number of B molecules that they contain. Thus,
the natural variables of G0 before applying the equilibrium constraints are represented by
G0ðT;P0;PB; fn0

igÞ, where n0
i is the amount of pseudoisomer group i. After applying the

equilibrium constraints, the criterion for equilibrium is ðdG0ÞT;P;PB;fncig 6 0. Note that
equation (2.2.10) shows that the transformed chemical potential of species i is defined by

l0
i ¼

oG0

on0i

� �
T ;P 0;PB;n0j

ð2:2:13Þ

before chemical constraints are applied.
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Equation (2.2.4) shows how to calculate the transformed chemical potential of a
species. Substituting equation (2.2.8) in equation (2.2.4) yields

l0
i ¼ lo

i þ RT lnðPi=P oÞ � NBilB ¼ l0o
i þ RT lnðPi=P oÞ; ð2:2:14Þ

where l0o
i ¼ lo

i � NBilB. For an actual calculation, equation (2.2.14) for species i can be
written in terms of transformed Gibbs energies of formation

DfG0
i ¼ DfG0o

i þ RT lnðPi=P oÞ; ð2:2:15Þ

where

DfG0o
i ¼ DfGo

i � NBifDfGo
B þ RT lnðPB=P oÞg: ð2:2:16Þ

At chemical equilibrium, the various species binding B are pseudoisomers, and so the
standard transformed Gibbs energy of the isomer group can be calculated with the
equation for isomer groupsð17Þ

DfG0oðpseudoisomer groupÞ ¼ �RT ln
X

exp½�DfG0o
i =RT �

n o
; ð2:2:17Þ

where the summation includes all of the pseudoisomers in a group. It is important to note
that the standard transformed Gibbs energy of the pseudoisomer group is not a weighted
average of the standard transformed Gibbs energies of formation of the pseudoisomers in
the group because there is an entropy of mixing term. It will always be more negative
than any one of them; in other words, the pseudoisomer group is more stable than any of
the pseudoisomers. The mole fraction ri of the ith pseudoisomers in the pseudoisomer
group is given byð24Þ

ri ¼ expfðDfG0oðpseudoisomer groupÞ � DfG0o
i Þ=RT g: ð2:2:18Þ

The standard transformed enthalpy of formation of the pseudoisomer group is a mole
fraction weighted average and is given by

DfH 0oðpseudoisomer groupÞ ¼
X

riDfH 0o
i : ð2:2:19Þ

This discussion has been based on making the chemical potential of one species a
natural variable, but it may be possible to make a Legendre transform involving more
than one species. For example, for a system of benzenoid polycyclic aromatic hydro-
carbons, acetylene, and molecular hydrogen, which has three components, it is possible to
specify PðC2H2Þ and PðH2Þ.ð22Þ If hydrogen atoms are included in the system as a re-
actant ðC ¼ 4Þ, it is possible to specify PðC2H2Þ, PðH2Þ, and PðHÞ. In other words, if
species that are specified can be interconverted, it is not necessary that they be at
equilibrium.

2.3. BIOCHEMICAL REACTIONS

This method of using a Legendre transformed Gibbs energy G0 is especially useful in
biochemistry where it is convenient to study systems at a specified pH, and in some cases
at a specified free concentration of Mg2þ or other cation that is bound by reactants. When
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the pH and pMg are specified, it is as if the biochemical reaction was carried out in a
reaction chamber connected to pH and pMg reservoirs through semipermeable mem-
branes. In this case, the Gibbs energy G of the contents of the reaction chamber is not
minimized at equilibrium because the concentrations of certain species are held constant.
Hydrogen and magnesium are not conserved in the reaction chamber. This is the reason
why biochemical reactions are written in terms of sums of species, as in the hydrolysis of
adenosine triphosphate (ATP) to adenosine diphosphate (ADP) and inorganic phosphate
(Pi), which is represented by the biochemical equation

ATPþ H2O ¼ ADPþ Pi ð2:3:1Þ

with apparent equilibrium constant K0 defined by

K 0 ¼ ½ADP�½Pi�
½ATP�co ; ð2:3:2Þ

where ATP, ADP, and Pi represent sums of species and co is the standard state con-
centration. This value of K0 depends on T, P, pH, pMg, and I (ionic strength). Note that
K0 and other thermodynamic properties like G, H, and li are taken to be functions of
ionic strength so that concentrations can be used in equation (2.3.2). This means that
pH ¼ lg½Hþ� and pMg ¼ � lg½Mg2þ� because activity coefficients are incorporated in the
thermodynamic properties.

The chemical potentials of hydrogen ion and the magnesium ion are introduced as a
natural variables by use of the Legendre transformð25–27Þ

G0 ¼ G� ncðHÞlðHþÞ � ncðMgÞl Mg2þ
� �

: ð2:3:3Þ

The amount of the hydrogen component in the reaction chamber is given by

ncðHÞ ¼
XN
i¼1

NHðiÞni; ð2:3:4Þ

where NHðiÞ is the number of hydrogen atoms in species i and ni is the amount of i. The
amount of the magnesium component in the reaction chamber is given by

ncðMgÞ ¼
XN
i¼1

NMgðiÞni; ð2:3:5Þ

where NMgðiÞ is the number of magnesium atoms in species i. The Gibbs energy of the
material in the reaction chamber is given by G ¼

P
lini. Substituting this and equations

(2.3.4) and (2.3.5) in equation (2.3.3) yields G0 ¼
P

l0
ini, where the transformed

chemical potential of species i is given by

l0
i ¼ li � NHðHÞlðHþÞ � NMgðMgÞl Mg2þ

� �
: ð2:3:6Þ

Taking the differential of G0 that is defined in equation (2.3.3) and substituting
equation (1.1.16) leads to
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dG0 ¼ �S0 dT þ V dP þ ncðHÞRT lnð10ÞdpHþ ncðMgÞRT lnð10ÞdpMgþ
XN 0

i¼1

l0
i dn

0
i;

ð2:3:7Þ

where N0 is the number of reactants (sums of species) in the system, and n0
i is the amount

of reactant i (sum of species). Some of the steps in the introduction of pH and pMg have
been omitted, but they are discussed elsewhere.ð27Þ The transformed entropy S0 of the
system is defined by

S0 ¼ S � ncðHÞSðHþÞ � ncðMgÞS Mg2þ
� �

: ð2:3:8Þ

This equation can be used to show that

S0 ¼
X

n0iS
0
i; ð2:3:9Þ

where

Si0 ¼ Si � NHðiÞSðHþÞ � NMgðiÞS Mg2þ
� �

: ð2:3:10Þ

Since H0 ¼ G0 þ TS0,

H 0 ¼ H � ncðHÞHðHþÞ � ncðMgÞH Mg2þ
� �

: ð2:3:11Þ

This equation can be used to show that

H 0 ¼
X

n0iH
0
i; ð2:3:12Þ

where

H
0
i ¼ Hi � NHðiÞHðHþÞ � NMgðiÞH Mg2þ

� �
: ð2:3:13Þ

The natural variables for G0 are T, P, pH, pMg, and fn0
ig, and the criterion for

equilibrium is ðdG0ÞT;P;pH;pMg;fn0
i
g 6 0. Equation (2.3.7) gives rise to many useful Maxwell

equations.
Equation (2.3.7) can be used to derive equation (2.3.2) for K0 at specified T, P, pH,

and pMg. The ionic strength also has an effect on K0, but the ionic strength is not an
independent variable in the same sense as the other four. It is important to specify the
ionic strength, just like it is important to specify the solvent. The standard transformed
Gibbs energy of reaction can be calculated using

DrG0o ¼ �RT lnK 0: ð2:3:14Þ

Other thermodynamic properties can be obtained by taking derivatives of this equation.
Tables of standard transformed Gibbs energies of formation at a specified pH and pMg
and standard transformed enthalpies of formation can be prepared and used like the usual
tables of standard thermodynamic properties.ð28Þ

The Panel on Biochemical Thermodynamics of the IUBMB-IUPAC Joint Commission
on Biochemical Nomenclature has published Recommendations for Nomenclature and
Tables in Biochemical Thermodynamics.ð29Þ Standard transformed formation properties
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of carbon dioxide in aqueous solution at specified pH have been calculated.ð30;31Þ

Legendre transformed thermodynamic potentials are also used in the study of binding and
linkage by macromolecules.ð32; 33Þ

3. Fundamental equations of thermodynamics for systems with
gravitational work and electric work

3.1. SYSTEMS WITH GRAVITATIONAL WORK

The effect of the gravitational potential w has been discussed earlier.ð34; 35Þ As shown in
table 1, gravitational work adds a term wdm ¼

P
ghMi dni to the fundamental equation

for U and the fundamental equation for G, where g is the gravitational acceleration and h
is the height above the surface of the earth. However, this term does not change the
natural variables for G, which are T, P, and fnig. Therefore, the fundamental equation for
G (equation (1.1.16)) is unchanged. In order to bring in the gravitational potential w,
which is an external variable that is not affected by what happens in the system, the
chemical potential of a species in the system is taken as

li ¼ lo
i þ RT ln ai þ ghMi: ð3:1:1Þ

This is the definition of the activity ai of a species i in a system in which gravitational
work is important. In such a system, the definition of the standard chemical potential lo

i

has to include a statement that lo
i is the value at unit activity at the surface of the earth

ðh ¼ 0Þ. For a given activity, the chemical potential li is a linear function of the height
above the earth�s surface. The fundamental equation for G is

dG ¼ �S dT þ V dP þ
X

ðlo
i þ RT ln ai þ ghMiÞdni: ð3:1:2Þ

Note that although the height above the surface of the earth is involved, the fundamental
equation does not give the derivative of G with respect to h. At equilibrium in an iso-
thermal atmosphere, the chemical potential of each species is independent of height, and
this leads to the barometric formula for an ideal gas.

The height h can be introduced as a natural variable by use of the Legendre transform
to define a transformed Gibbs energy

G0 ¼ G�
X

ghMini: ð3:1:3Þ

Taking the differential of G0 and substituting equation (3.1.2) yields

dG ¼ �S dT þ V dP þ
X

ðlo
i þ RT ln aiÞdni �

X
gMiNi dh: ð3:1:4Þ

This indicates that it is reasonable to define a transformed chemical potential l0
i by

l0
i ¼

oG0

oni

� �
T ;P ;h;nj

¼ lo
i þ RT ln ai; ð3:1:5Þ

where j 6¼ i. Thus, equation (3.1.1) can be written as

li ¼ l0
i þ ghMi: ð3:1:6Þ
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Since li is constant throughout an equilibrium system with changing gravitational po-
tential, l0

i varies throughout the system. Other transformed thermodynamic properties of
species i can be obtained by taking derivatives of equation (3.1.5). Since

P
Mimi ¼ 0,

where mi is the stoichiometric number for i, for a chemical reaction, there is no effect of a
gravitational potential on the equilibrium constant for a chemical reaction.

The potential w a centrifugal field is given byð34Þ

w ¼ � 1
x2r2

; ð3:1:7Þ

where x is the angular velocity and r is the distance from the axis of rotation.

3.2. SYSTEMS WITH ELECTRIC WORK

3.2.1. FUNDAMENTAL EQUATION FOR THE GIBBS ENERGY OF A MULTI-PHASE
SYSTEM WITH ELECTRIC WORK
In considering the thermodynamics of systems in which there are electric potential dif-
ferences, the activity ai of an ion is defined in terms of its chemical potential li and the
electric potential /i of the phase the ion is inð35–38Þ

li ¼ lo
i þ RT ln ai þ ziF/i; ð3:2:1:1Þ

where lo
i is the standard chemical potential of ion i in a phase with an electric potential of

zero, F is the Faraday constant, and zi is the charge number. The purpose of this defi-
nition is to introduce the activity ai, which is more convenient than li in discussing
experimental data. This shows that the chemical potential of an ion is a function of /i as
well as ai. The activity has the same functional dependence on intensive properties in the
presence of electric potential differences as in their absence. The description of the state
for the standard chemical potential lo

i of species i has to include the statement that lo
i is

the same in the presence of an electric potential as in its absence.
The symbol ~lli has been used in electrochemistry to describe ionic properties that

depend on electric potential. It has the same physical meaning as li on the left-hand side
of equation (3.2.1.1) and has been referred to by electochemists as the electrochemical
potential. Thus, lo

i þ RT ln ai can be considered to be the contribution to li or ~lli inde-
pendent of the electrical state of the phase in question. However, ~lli or li in equation
(3.2.1.1) is really the chemical potential in the sense of Gibbs in that it is a quantity that is
independent of phase at equilibrium.

The form of the fundamental equation for a system involving phases at different
electric potentials depends on the system. There is a fundamental equation for each phase,
and the fundamental equation for the system is the sum of the fundamental equations for
the various phases. This is illustrated here by a system consisting of two aqueous phases
separated by a semipermeable membrane. The two phases contain ions A, B, and C,
which are involved in the reaction A+B¼C in each phase. The membrane is perme-
able only by ion C. This system has been discussed by Alberty.ð39Þ Since C can diffuse
through the membrane without counter ions, the membrane becomes polarized. When
electric charge is added to a conductor, as in this case when C diffuses through the
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membrane, the charge is concentrated on the surface of the conductor so that the bulk
phases remain electrically neutral. If C is a cation and some of it has diffused from the a
side of the membrane to the b side of the membrane, the membrane has a positively
charged layer in the solution on the b side and a negatively charged layer of solution on
the a side. These layers are formed in the charge relaxation time of about a nanosecond
and have a thickness of the Debye length,ð40Þ which is about 1 nm at an ionic strength I of
0.1M. Many biological membranes have capacitances of about 1 lF cm�2 and in this
case the charge transfer per square centimeter required to set up a potential difference of
0.1V is 10�12 mol of singly charged ions. As C diffuses through the membrane a dif-
ference in electric potential is set up that opposes the transfer of more C ions, and so an
equilibrium difference in electric potential across the membrane is reached.

Since the bulk phases remain electrically neutral, even though they are at different
electric potentials, it is convenient to think of this system as having three phases, a, b, and
a membrane phase consisting of the membrane and thin layers of solution on either side
with thickness of the order of 10 nm (10Debye lengths). When ion C diffuses through the
membrane, these ions can be considered to come from the thin layer on one side of the
membrane and to go into the thin layer on the other side. This transfer of the order of
10�12 mol of C � cm�2 from one side to the other involves only a small fraction of the C
ions in the thin layers. Thus, the amounts of C in phases a and b are not altered by this
transfer, which leads to a large electric effect.

The fundamental equations for G for the three phases are

dGa ¼ �Sa dT þ Va dP þ lAa dnAa þ lBa dnBa þ lCa dnCa; ð3:2:1:2Þ

dGb ¼ �Sb dT þ Vb dP þ lAb dnAb þ lBb dnBb þ lCb dnCb; ð3:2:1:3Þ

dGmb ¼ ð/b � /aÞdQ ð3:2:1:4Þ
where Gmb is the Gibbs energy of the membrane including the thin layers of solution with
diffuse ionic gradients. The fundamental equation for the membrane is written in terms of
the charge Q transferred from the a side of the membrane to the b side; it could be written
in terms of amounts of C in the thin layers on either side of the membrane, but Q is used
to emphasize that this quantity is independent of nCa and nCb. In subsequent equations, /a

is taken as zero as a simplification. In writing equation (3.2.1.4), the contribution of the
entropy and volume of the membrane phase to the entropy and volume of the whole
system is neglected.

When ionic species are involved, there must be counter ions so that the bulk phases will
be electrically neutral. The inclusion of the counter ion in the fundamental equation for a
phase increases the number of species by one, but this brings in the electroneutrality
condition so that the number of natural variables is not changed. In making equilibrium
calculations, it is simpler to omit the counter ions and the electroneutrality condition be-
cause the same equilibrium composition is obtained either way. It has to be understood that
when ions are involved, there are counter ions to make each of the bulk phases electrically
neutral. The membrane phase is an electrically neutral dipolar layer. Water is omitted in
writing the fundamental equations because its amounts in the three phases do not change.

Use of legendre transforms in chemical thermodynamics 1809



The fundamental equation for G for the system is the sum of equations (3.2.1.2)–
(3.2.1.4), which is

dG ¼� S dT þ V dP þ lAa dnAa þ lBa dnBa þ lCa dnCa

þ lAb dnAb þ lBb dnBb þ lCb dnCb þ /b dQ; ð3:2:1:5Þ

where S ¼ Sa þ Sb and V ¼ Va þ Vb. Because of the reaction in each phase,
dnAa ¼ dnBa ¼ �dnCa and dnAb ¼ dnBb ¼ �dnCb. This leads to the equilibrium conditions

lAa þ lBa ¼ lCa; ð3:2:1:6Þ

lAb þ lBb ¼ lCb ð3:2:1:7Þ

for the reactions in the two bulk phases

Aa þ Ba ¼ Ca; ð3:2:1:8Þ

Ab þ Bb ¼ Cb: ð3:2:1:9Þ

The transfer of electric charge from the thin layer on the a side of the membrane to the
thin layer on the b side leads to the following equilibrium condition:

lCa ¼ lCb ð3:2:1:10Þ

because the electric potential difference /b reaches the value at equilibrium that is re-
quired to make lCb equal to lCa at the specified values of aCa and aCb. This condition
corresponds with the reaction

Ca ¼ Cb: ð3:2:1:11Þ

In other words, the equilibration of C between the phases is accomplished by changing
the electric potential of the b phase, rather than changing the amount of C in the b phase.

The equilibrium conditions (3.2.1.6), (3.2.1.7), and (3.2.1.10) can be used to derive
the following three equilibrium constant expressions by inserting equation (3.2.1.1):

Ka ¼
aCa

aAaaBa
¼ expf�ðlo

C � lo
A � lo

BÞ=RTg; ð3:2:1:12Þ

Kb ¼ aCb

aAbaBb
¼ expf�ðlo

C � lo
A � lo

BÞ=RT g; ð3:2:1:13Þ

KC ¼ aCb

aCa
¼ exp �

FzC/b

RT

� �
: ð3:2:1:14Þ

Equation (3.2.1.14) is the familiar relation for the membrane potential equation,ð3;10Þ

except that aCa and aCb are not independent variables. Note that the effect of the electric
potential cancels in the derivation of the expressions for Ka and Kb and that Ka ¼ Kb.
The equilibrium concentrations of C from equations (3.2.1.12) and (3.2.1.13) can be
substituted in equation (3.2.1.14) to obtain
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aAbaBb

aAaaBb
¼ exp �

FzC/b

RT

� �
ð3:2:1:15Þ

or

� RT
FzC

ln
aAbaBb

aAaaBb
¼ /b: ð3:2:1:16Þ

This shows how a reaction between ions can produce a difference in electric potentials
between phases at equilibrium.

Substitution of the equilibrium conditions for the three reactions in the fundamental
equation (3.2.1.5) yields

dG ¼ �S dT þ V dP þ lAa dncAa þ lAb dncAb þ lCa dncC þ /b dQ; ð3:2:1:17Þ

where ncAa ¼ nAa � nBa, ncAb ¼ nAb � nBb, ncCa ¼ nCa þ nBa, ncCb ¼ nCb þ nBb, and
ncC ¼ ncCa þ ncCb. The use of nci to represent the amount of a component has been dis-
cussed in section 1.5. Equation (3.2.1.17) indicates that there are six natural variables;
D ¼ 6. The criterion for spontaneous change and equilibrium for the system is

ðdGÞT ;P ;ncAa;ncAb;ncC;Q
O0: ð3:2:1:18Þ

The chemical potential of A in the a phase is given by

lAa ¼
oG
oncAa

� �
T ;P ;ncAb;ncC;Q

: ð3:2:1:19Þ

3.2.2. FUNDAMENTAL EQUATION FOR THE TRANSFORMED GIBBS ENERGY OF A
MULTI-PHASE SYSTEM WITH ELECTRIC WORK
The equilibrium relations of the preceding section were derived on the assumption that
the charge transferred Q can be held constant, but that is not really practical from an
experimental point of view. It is better to consider the potential difference between the
phases to be a natural variable. That is accomplished by use of the Legendre transform

G0 ¼ G� /bQ; ð3:2:2:1Þ

which defines the transformed Gibbs energy G0. Since

dG0 ¼ dG� /b dQ� Qd/b; ð3:2:2:2Þ

substituting equation (3.2.1.17) yields

dG0 ¼ �S dT þ V dP þ lAa dncAa þ lAb dncAb þ lC dncC � Qd/b: ð3:2:2:3Þ

This indicates that there are six natural variables for the transformed Gibbs energy, the
same as for the Gibbs energy (equation (3.2.1.17)). The criterion for spontaneous change
and equilibrium is given by

ðdGÞT ;P ;ncAa;ncAb;ncC;/b
O0: ð3:2:2:4Þ

Use of legendre transforms in chemical thermodynamics 1811



This can be used to derive equations (3.2.1.12)–(3.2.1.16). To learn more about the
derivatives of the transformed Gibbs energy, the chemical potentials of species are re-
placed by use of equation (3.2.1.1) to obtain

dG0 ¼ �S dT þ V dP þ ðlo
A þ RT ln aAaÞdncAa þ ðlo

A þ RT ln aAbÞdncAb

þ ðlo
C þ RT ln aCaÞdncCa � Qd/b: ð3:2:2:5Þ

Thus,

oG0

oncAa

� �
T ;P ;ncAb;ncC;fb

¼ lo
A þ RT ln aAa ¼ lAa0 : ð3:2:2:6Þ

This derivative is referred to as the transformed chemical potential of A in the a phase.
Substituting this relation in equation (3.2.1.1) yields

li ¼ l0
i þ ziF/i; ð3:2:2:7Þ

which shows the relationship between the chemical potential and the transformed
chemical potential.

Since this three-phase system has six natural variables at equilibrium ðD ¼ 6Þ, the
number of intensive degrees of freedom f is given by f ¼ ðD � pÞ ¼ ð6� 3Þ ¼ 3, where p
is the number of phases. This is in accord with f ¼ ðC � p þ 3Þ ¼ ð3� 3þ 3Þ ¼ 3, where
the electric potential is considered to be an independent natural variable like T and P.

3.2.3. THERMODYNAMIC PROPERTIES OF AN ION IN PHASES WITH DIFFERENT
ELECTRIC POTENTIALS
Equation (3.2.1.5) can be written in a more general way as

dG ¼ �S dT þ V dP þ
X

lia dnia þ
X

lib dnib þ /b dQ: ð3:2:3:1Þ

Integration at constant values of the intensive variables yields

G ¼
X

liania þ
X

libnib þ /bQ: ð3:2:3:2Þ

The entropy of the system can be obtained by use of the following derivative:

S ¼ � oG
oT

� �
P ;fniag;fnibg;Q

; ð3:2:3:3Þ

where fniag represents the set of amounts of species in the a phase. Taking this derivative
of G yields

S ¼
X

nia �SSia þ
X

nib �SSib; ð3:2:3:4Þ

where �SSia is the partial molar entropy of i, since /b is determined by Q, which is held
constant. Substituting equation (3.2.2.7) in equation (3.2.3.2) yields

G ¼
X

l0
iania þ

X
l0
ibnib þ F/b

X
zinib þ /bQ: ð3:2:3:5Þ
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Taking the derivative in equation (3.2.3.3) yields

S ¼
X

nia �SS0ia þ
X

nib �SS0ib; ð3:2:3:6Þ

where �SS0
ia is the transformed molar entropy of i in the a phase. Comparing this equation

with equation (3.2.3.4) shows that the molar entropy if a species is not affected by the
electric potential of a phase: thus �SSi ¼ �SS0

i and S ¼ S0.
The corresponding molar enthalpy is obtained by use of the Gibbs–Helmholtz

equation: H ¼ �T2½oðG=TÞ=oT�P. Applying this to equations (3.2.3.1) and (3.2.3.2)
yields

H ¼
X

nia �HHia þ
X

nib �HHib þ /bQ; ð3:2:3:7Þ

where �HHi is the molar enthalpy of i, and

H ¼
X

nia �HH 0
ia þ

X
nib �HH 0

ib þ F/b

X
zini þ /bQ; ð3:2:3:8Þ

where �HH0
i is the transformed molar enthalpy. Comparing equations (3.2.3.7) and (3.2.3.8)

shows that

�HHi ¼ �HH 0
i þ Fzi/b: ð3:2:3:9Þ

Thus, the molar enthalpy of an ion is affected by the electric potential of the phase in the
same way as the chemical potential (see equation (3.2.2.7)).

3.2.4. NOMENCLATURE OF THE ELECTROCHEMICAL POTENTIAL
A number of different treatments have been given of multi-phase systems with electric
potential differences between the phases, starting with Gibbs.ð1Þ An early treatment was
made by Gugeenheimð41Þ in which he used l and referred to it as the electrochemical
potential. Later in his textbook Thermodynamics,ð35Þ he used the equivalent of equation
(3.2.1.1) with ~lli, and he referred to it as the electrochemical potential. In making
recommendations about thermodynamic nomenclature for such systems, IUPACð42–44Þ

has used ~lli and referred to it as the electrochemical potential. The IUPAC recom-
mendations for Quantities, Units and Symbols in Physical Chemistryð45Þ has recom-
mended ~lli, and this will continue in the next edition with the electrochemical potential
defined as

~lli ¼ lo
i þ RT ln ai þ ziF/i: ð3:2:4:1Þ

While the symbol ~lli has been used widely in electrochemistry, the symbol li (as
defined in equation (3.2.1.1)) has been used in the preceding three sectionsð48Þ. The two
symbols have the same meaning. The important point is that this physical quantity is
independent of phase at equilibrium. This aspect is particularly important when the ef-
fects of temperature and pressure are being discussed and when other kinds of work, e.g.,
chemical and surface, are also involved. Since both conventions are currently used, it is
important to check which convention is being followed.

Use of legendre transforms in chemical thermodynamics 1813



4. Fundamental equations of thermodynamics for systems with
other kinds of work

4.1. SYSTEMS WITH SURFACE WORK

A number of treatments of the thermodynamics of systems with interfaces are avail-
able.ð34;35;47;48Þ As an example of a system involving surface work, consider a binary li-
quid solution in contact with its vapor or two immiscible binary solutions at equilibrium
with variable surface area between the phases. The fundamental equation for the Gibbs
energy of the whole three-phase system isð49Þ

dG ¼ �S dT þ V dP þ la
1 dn

a
1 þ la

2 dn
a
2 þ lb

1 dn
b
1 þ l2 dn

b
2 þ lr

1 dn
r
1 þ lr

2 dn
r
2 þ cdAs:

ð4:1:1Þ

Here c is the interfacial tension, and As is the interfacial area. The superscripts a and b
indicate the two bulk liquid phases, and the r superscript indicates a property of the
surface phase. If the three phases are at equilibrium, the values of the chemical potentials
are restricted by the following equilibrium conditions: la

1 ¼ lr
1, la

1 ¼ lb
1, la

2 ¼ lr
2, and

la
2 ¼ lb

2. In writing these conditions the phase equilibria are treated like chemical reac-
tions. Since la

1 ¼ lb
1 ¼ lr

1 ¼ l1 and la
2 ¼ lb

2 ¼ lr
1 ¼ l2, the superscripts on the chemical

potentials can be dropped when the system is at equilibrium. Thus, equation (4.1.1) can
be written as

dG ¼ �S dT þ V dP þ l1ðdna
1 þ dnb

1 þ dnr
1Þ þ l2ðdna

2 þ dnb
1 þ dnr

2Þ þ cdAs

¼ �S dT þ V dP þ l1 dnc1 þ l2 dnc2 þ cdAs; ð4:1:2Þ

where the amounts of the two components are represented by nc1 and nc2:

nc1 ¼ na
1 þ nb

1 þ nr
1 ; ð4:1:3Þ

nc2 ¼ na
2 þ nb

2 þ nr
2 : ð4:1:4Þ

At equilibrium, the natural variables for G are indicated by GðT;P; nc1; nc2;AsÞ. The
amounts of components are independent variables because they are the amounts added to
the system, but the amounts of species in a phase are not independent variables because
they are determined by the equilibrium. Integration of equation (4.1.2) at constant T, P,
and composition yields

G ¼ l1nc1 þ l2nc2 þ cAs: ð4:1:5Þ

There is a Gibbs–Duhem equation for each phase, including the interfacial phase, and the
sum of these three equations is the Gibbs–Duhem equation for the system, which can be
obtained by making the following Legendre transform to define a transformed Gibbs
energy G0 that has T, P, l1, l2, and c as its natural variables,

G0 ¼ G� l1nc1 � l2nc2 � cAs ¼ 0: ð4:1:6Þ
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It is important that this equation contains nc1 and nc2, rather than na
1, na

2, nb
1, nb

2, nr
1, and nr

2,
because nc1 and nc2 are independent variables for the equilibrium system. Taking the
differential of G0 and substituting equation (4.1.2) yields

0 ¼ �S dT þ V dP � nc1 dl1 � nc2 dl2 � As dc: ð4:1:7Þ

This Gibbs–Duhem equation can be used to derive the Gibbs adsorption equation for a
liquid–liquid interface or a liquid–vapor interface. The equation for the system with a
liquid–liquid interface is quite complicated, but it reduces to the Gibbs adsorption derived
by Bett et al.ð47Þ for a liquid–vapor interface. This equation is

dc ¼ �fðSr=AsÞ � �SSa
1C1 � �SSa

2C2gdT þ ðxa
1C2 � xa

2C1Þ
1
xa
1

ol2

oxa
1

� �
T

dxa
2; ð4:1:8Þ

where Sr is the interfacial entropy, the adsorptions of the components are given by
C1 ¼ nr

1=As and C2 ¼ nr
2=As, and xa

1 and xa
2 are the mole fractions of species 1 and 2

in the liquid phase. This indicates that two derivatives can be determined experi-
mentally,

oc
oT

� �
P ;x2a

¼ �fðSr=AsÞ � �SSa
1C1 � �SSa

2C2g ð4:1:9Þ

and

oc
oxa

2

� �
T ;P

¼ ðxa
1C2 � xa

2C1Þ
1
xa
1

ol2

oxa
1

� �
T

: ð4:1:10Þ

Thus,

C ¼ xa
1C2 � xa

2C1 ð4:1:11Þ

can be determined from measurements of the surface tension as function of xa
1.

The IUPAC recommendations on the thermodynamic properties of surfacesð50Þ are
based on Legendre transformations, but they do not follow all of the conventions
recommended here.

4.2. SYSTEMS WITH MECHANICAL WORK

The thermodynamics of crystals is discussed very thoroughly by Wallaceð51Þ. He shows
that the fundamental equation for the Helmholtz energy of a crystal under stress is given
by

dA ¼ �S dT þ V
X
ij

sij dgij; ð4:2:1Þ

where sij is the tensor representing the applied stress and gij is the Lagrangian strain
parameter. The applied stress is assumed to be uniform (i.e., constant on a given
crystal surface), and the resulting strain is homogeneous (i.e., uniform throughout the
crystal).
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Rather than going into the details of this subject here, we simply observe that the length
L of a solid subjected to a force f of extension is an extensive property, which is a natural
variable of U, H, A, and G. The fundamental equations for U and A can be written

dU ¼ T dS þ f dL; ð4:2:2Þ

dA ¼ �S dT þ f dL; ð4:2:3Þ

if PV work is negligible. This application of thermodynamics is of special interest to
chemists in connection with the properties of high polymers. For rubber, the tension is
primarily an entropy effect. In making stress–strain measurements, the change in the
force f with temperature can be measured, but it may be more convenient to hold the
force constant and measure the length. In this case it is convenient to make the force a
natural variable by making the Legendre transform

A0 ¼ A� fL ¼ 0: ð4:2:4Þ

This is a complete Legendre transform. Taking the differential of this equation and
substituting equation (4.2.3) yields

0 ¼ �S dT � Ldf ; ð4:2:5Þ

which is a Gibbs–Duhem equation. This yields the Maxwell equation

oS
of

� �
T
¼ oL

oT

� �
f
: ð4:2:6Þ

Chemical work is coupled with mechanical work in muscle contraction.

4.3. SYSTEMS WITH WORK OF ELECTRIC POLARIZATION

The effect of work of electric transport on thermodynamics has been discussed in section
3.2, but here we are concerned with the work of producing electric polarization in a non-
conductor by an electric field. This topic has been discussed in a number of books.ð14;34Þ

In treating electric polarization, it is of interest to consider electrically polarizable sys-
tems involving elongation work, but no PV work. The fundamental equation for U for
such a system is

dU ¼ T dS þ f dLþ E � dp; ð4:3:1Þ

where E is the electric field strength and p is the dipole moment of the system. When it is
not necessary to consider pressure as a natural variable, we use the Helmholtz energy A,
rather than the Gibbs energy. The fundamental equation for A is

dA ¼ �S dT þ f dLþ E � dp: ð4:3:2Þ

In discussions of thermoelectric, pyroelectric, and piezoelectric effects, it is advantageous
to use the transformed Helmholtz energy obtained with the Legendre transform

A0 ¼ A� fL� E � p ¼ 0: ð4:3:3Þ
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This is a complete Legendre transform and yields a Gibbs–Duhem equation. Taking the
differential of A0 and substituting (4.3.2) yields

0 ¼ �S dT þ V dP � Ldf � p � dE or 0 ¼ �S dT þ V dP � Ldf � pdE; ð4:3:4Þ

where the last form applies to an isotropic system. This Gibbs–Duhem equation yields
three Maxwell equations:ð14Þ

thermoelastic:

oS
of

� �
E;T

¼ oL
oT

� �
f ;E

; ð4:3:5Þ

pyroelectric:

oS
oE

� �
T ;f

¼ op
oT

� �
f ;E

; ð4:3:6Þ

piezoelectric:

oL
oE

� �
T ;f

¼ op
of

� �
T ;E

: ð4:3:7Þ

Note that Gibbs–Duhem equations are especially useful for obtaining Maxwell equations
in which the derivatives are with respect to intensive variables and the variables held
constant are all intensive variables.

4.4. SYSTEMS WITH WORK OF MAGNETIC POLARIZATION

The effects of magnetic polarization on thermodynamics is discussed in several places in
the literature.ð14;34;52;53Þ The fundamental equation for U for a system involving magnetic
polarization is

dU ¼ T dS þ B � dm; ð4:4:1Þ

where B is the magnetic flux density and m is the magnetic moment of the system. It is
assumed that PV work is negligible. The corresponding fundamental equation for the
Helmholtz energy is

dA ¼ �S dT þ B � dm or dA ¼ �S dT þ Bdm: ð4:4:2Þ

In order to treat adiabatic demagnetization, it is advantageous to use the magnetic flux
density as an intensive variable. A transformed Gibbs energy is defined by

A0 ¼ A� B �m ¼ 0: ð4:4:3Þ

This is the complete Legendre transform, and it yields the Gibbs–Duhem equation

0 ¼ �S dT �m � dB or 0 ¼ �S dT � mdB; ð4:4:4Þ
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where the last form applies to an isotropic system. This yields the Maxwell equation

oS
oB

� �
T
¼ om

oT

� �
B
: ð4:4:5Þ

The effect of a magnetic field on a chemical reaction producing a paramagnetic species
from a diamagnetic species is small and readily calculated.

5. Recommendations

1. These recommendations are based on the following definitions of the enthalpy H,
Helmholtz energy A, and Gibbs energy G: H ¼ U þ PV, A ¼ U � TS, and
G ¼ U þ PV � TS. We recommend that these definitions not be altered. If the fun-
damental equation for U involves terms for work in addition to PV work, they should
be of the form (intensive property)d(extensive property). Thus, the fundamental
equations for U, H, A, and G involve the same non-PV work terms, which involve the
differentials of extensive properties.

2. Natural variables are important because if a thermodynamic potential can be deter-
mined as a function of its natural variables, all of the other thermodynamic properties
of the system can be calculated by taking partial derivatives. Natural variables are also
important because they are held constant in the criterion for spontaneous change and
equilibrium. It is important to distinguish between natural variables before and after
the application of constraints resulting from phase equilibrium and chemical equi-
librium. The criterion for equilibrium is stated in terms of the natural variables after all
the constraints have been applied.

3. The chemical potential of species i is defined by

li ¼
oU
oni

� �
S;V ;nj;Xi

¼ oH
oni

� �
S;P ;nj;Xi

¼ oA
oni

� �
T ;V ;nj;Xi

¼ oG
oni

� �
T ;P ;nj;Xi

; ð5:1Þ

where j 6¼ i and Xi represents all of the independent extensive variables in non-PV and
non-chemical work involved. It is important to retain li for this purpose because li is
the same throughout a multi-phase system at equilibrium, even if the phases are dif-
ferent states of matter and have different pressures or different electric potentials.
When phase equilibrium and chemical equilibrium are involved, these derivatives can
be written in terms of components rather than species.

4. In order to introduce the intensive variables of non-PV work as natural variables, it is
necessary to define thermodynamic potentials in addition to U, H, A, and G with
Legendre transforms. These Legendre transforms are of the form, U0 ¼
U �

P
ðextensive propertyÞðconjugate intensive propertyÞ, and so the transformed

thermodynamic potential U0 can always be represented by Callen�s nomenclature as
U½Pi�, where the Pi are the intensive properties introduced as natural variables by the
Legendre transform. This nomenclature can be extended by making Legendre trans-
forms of H, A, and G, and representing the transformed thermodynamic potentials by
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H½Pi�, A½Pi� and G½Pi�, where the Pi are the intensive properties introduced as natural
variables in addition to the intensive variables that have been introduced by the defi-
nitions of these thermodynamic potentials. Examples are G½pH; pMg�, G½/�, A½f�, G½r�,
and U½E�. Legendre transformed thermodynamic potentials can be represented by U0,
H0, A0, and G0, but it is necessary to specify the intensive variables that have been
introduced when this notation is used.

5. The transformed chemical potential of species i is defined by

l0
i ¼

oU 0

oni

� �
S;V ;nj;Xi;Pj

¼ oH 0

oni

� �
S;P ;nj;Xi;Pj

¼ oA0

oni

� �
T ;V ;nj;Xi;Pj

¼ oG0

oni

� �
T ;P ;nj;Xi;Pj

; ð5:2Þ

where j 6¼ i and the Pj represents intensive variables that have been introduced by
Legendre transforms. The j is used to indicate that Pi is not in the conjugate pair with
extensive variables Xi. When phase equilibrium and chemical equilibrium are in-
volved, these derivatives can be written in terms of components rather than species.

6. The properties subscripted on partial derivatives are always natural variables. It is
important to be sure that natural variables are independent. The number D of natural
variables is given by f þ p, where f is the number of independent intensive variables
given by the phase rule and p is the number of phases.

6. Appendix: Fields and densities

The variables in a fundamental equation are often classified as intensive variables and
extensive variables, but there is a problem because a fundamental equation can be divided
by volume, mass, or total amount. When this is done, the fundamental equation is ex-
pressed entirely in terms of intensive variables. When a fundamental equation is written
in this way, it is important to make a distinction between two types of intensive variables
because some of the intensive variables are uniform throughout a system at equilibrium
and others are not. Griffiths and Wheelerð54Þ recommended that a distinction be made by
referring to T, P, li, electric field strength, and magnetic field strength as ‘‘fields’’ and
referring to extensive variables divided by volume, mass, or amount as ‘‘densities.’’ The
important feature of fields is that they have uniform values in a system at equilibrium.
The pressure is an exception to this statement when there are curved surfaces or when
there are semipermeable membranes that lead to an osmotic pressure at equilibrium.
When fundamental equations are written for U, H, S, A, G, etc., some of the variables are
fields and others are extensive variables. When fundamental equations are divided by
volume, mass, or amount, some of the variables are fields and the others are densities.

7. Nomenclature

Note. When primes are used on thermodynamic potentials, it is important to indicate in
the context the intensive variables that have been specified. This also applies when
primes are used on equilibrium constants, amounts, or numbers like the number of
components, number of degrees of freedom, and stoichiometric numbers. SI units are in
parentheses.
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ai activity of species i (dimensionless)
A Helmholtz energy/J
A0 transformed Helmholtz energy/J
As surface area/m2

A conservation matrix ðC � NÞ (dimensionless)
B magnetic flux density (T)
B magnitude of the magnetic flux density, B ¼ jBj/T
C number of components (C ¼ N � R) (dimensionless)
co standard state concentration/(mol � L�1)
D number of natural variables (dimensionless)
E electric field strength/ðV �m�1Þ
E magnitude of the electric field strength, E ¼ jEj/(V �m�1)
f force (N)
f number of independent intensive variables (degrees of freedom)

(dimensionless)
F Faraday¼ 96 485C �mol�1

g acceleration of gravity/(m � s�2)
G Gibbs energy/J
G0 transformed Gibbs energy/J
DfGo

i standard Gibbs energy of formation of species i/(kJ �mol�1)
DfG0o

i standard transformed Gibbs energy of formation of reactant i/(kJ �mol�1)
DrGo standard Gibbs energy of reaction/(J �mol�1)
DrG0o

i standard transformed Gibbs energy of reaction at a specified pressure or
concentration of a species/(J �mol�1)

DrG Gibbs energy of reaction/(J �mol�1)
DrG0 transformed Gibbs energy of reaction at a specified pressure or

concentration of a species/(J �mol�1)
h height above the surface of the earth/m
H enthalpy/J
H 0 transformed enthalpy/J
DrH reaction enthalpy/(J �mol�1)
Hi partial molar enthalpy of i/(J �mol�1)
H

0
i partial molar transformed enthalpy of i/(J �mol�1)

H
0o
i standard partial molar transformed enthalpy of i/(J �mol�1)

DrH 0o standard transformed enthalpy of reaction at a specified concentration of a
species/(J �mol�1)

DfH o
i standard enthalpy of formation of species i/(J �mol�1)

DfH 0o
i standard transformed enthalpy of formation of i at a specified concen-

tration of a species/(J �mol�1)
I ionic strength/(mol � L�1)
K equilibrium constant (dimensionless)
K 0 apparent equilibrium constant at specified concentration of a species

(dimensionless)
L elongation/m
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m mass/kg
m magnetic dipole moment of the system/(J � T�1)
m magnitude of the magnetic moment of the system/(J � T�1)
Mi molar mass of species i/(kg �mol�1)
ni amount of species i/mol
nci amount of component i/mol
n amount of species matrix (N � 1)/mol
nc amount of component matrix (C� 1)/mol
n0i amount of reactant i (sum of species)/mol
nr
i interfacial amount of species i/mol

ncB amount of B component/mol
N number of species when a single phase is involved and number of species

in different phases for a multi-phase system (dimensionless)
N 0 number of reactants (pseudoisomer groups) (dimensionless)
NHði) number of hydrogen atoms in a molecule of i (dimensionless)
NMgði) number of magnesium atoms in a molecule of i (dimensionless)
NBði) average number of B bound by a molecule of i (dimensionless)
P pressure/bar
Pi partial pressure of i/bar
P o standard state pressure¼ 1 bar
P 0 partial pressure of species other than the one with a specified pressure/bar
Pj intensive variable in Callen�s nomenclature (varies)
p electric dipole moment of the system/(C �m)
p magnitude of the dipole moment of the system/(C �m)
p number of phases (dimensionless)
pH � lgð½Hþ�=co) (dimensionless)
pMg � lgð½Mg2þ�=co) (dimensionless)
Q canonical ensemble partition function (dimensionless)
Qi electric charge transferred/C
ri equilibrium mole fraction of i within an isomer group or pseudoisomer

group (dimensionless)
R gas constant¼ 8.314 472 J � K�1 �mol�1

R number of independent reactions (dimensionless)
S entropy/(J � K�1)
DrS entropy of reaction/(J � K�1 �mol�1)
DrS0 transformed entropy of reaction/(J � K�1 �mol�1)
Si partial molar entropy of i/(J � K�1 �mol�1)
S
0
i partial molar transformed entropy of i/(J � K�1 �mol�1)

S
0o
i standard partial molar transformed entropy of i/(J � K�1 �mol�1)

S0 transformed entropy/(J � K�1)
T temperature/K
U internal energy/J
U 0 transformed internal energy/J
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